If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25y+y^2-100=0
a = 1; b = 25; c = -100;
Δ = b2-4ac
Δ = 252-4·1·(-100)
Δ = 1025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1025}=\sqrt{25*41}=\sqrt{25}*\sqrt{41}=5\sqrt{41}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-5\sqrt{41}}{2*1}=\frac{-25-5\sqrt{41}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+5\sqrt{41}}{2*1}=\frac{-25+5\sqrt{41}}{2} $
| 2b−5=7 | | n/3+12=13 | | k-2=46 | | 4x4=3 | | 19x+67=100 | | 9-18+2=8x-2 | | 4x-16+8=4x-7 | | 49.62=x-0.15x | | 9-54+45=9x-9 | | Y+2y-3=6 | | ½+x=4/7 | | 3x+27=6x+42 | | -17+b/8=-13 | | 9−2c=1 | | c/42=320 | | 6x+29+2x−9=180 | | -10-45=2x-8-19 | | 25^4x-3=(1/125)^x+1 | | 0.16-3.6=11+2x | | 2=2n−8 | | d/8-4=-7 | | h/6-5=-8 | | X^2+2x+625=0 | | 7c+8=2(5c-4) | | 5b-4=3(b+6) | | 3e/5-4=11 | | 3(2b+5)=3b+6 | | 12+2x=-4x+12-42 | | W+24+w-60=93 | | -u/7=2=-13 | | (x+3)2=(x+8)2 | | 7n+6-2n-4-4n=87 |